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1 Introduction

We introduce π0.6, our newest vision-language-action (VLA) model that builds on top of π0.5 [2]
and achieves stronger performance across tasks. π0.6 preserves the hierarchical design of π0.5, pro-
viding high-level subtask prediction and low-level action generation. It incorporates a few changes
involving the pre-trained VLM backbone and prompt design (Section 2), as well as the training
datasets (Section 3). Section 4 analyzes the improvement in performance of π0.6 compared to π0.5
on a range of tasks that require dexterity and generalization. These experiments evaluate each
model out of the box, without finetuning. This model has also been adopted as the base model for
π∗
0.6 [7] where it is further improved through real-world reinforcement learning.

2 Model Design

Similar to π0 [1] and π0.5, the π0.6 architecture (Figure 1) generates action chunks based on both
flow matching and tokenized discrete outputs. The vision-language backbone is initialized from the
Gemma3 4B model [6], and the “action expert” has the same number of layers as the backbone and
consists of about 860M parameters. During pre-training, the model receives up to four images as
input, each having resolution 448×448, corresponding to a base camera, up to two wrist cameras,
and an optional backward camera for mobile manipulators. The image tokens after the vision
encoder are concatenated with the tokenized language prompt and tokenized proprioceptive states.
We keep bidirectional attention among all of the image tokens (as in π0.5) but use causal attention
among the text tokens. Action tokens fed into the action expert use bidirectional attention. The
model is trained with Knowledge Insulation [3]: the vision-language backbone predicts FAST action
tokens [5] and co-training examples, such as multi-modal web data. The action expert predicts
continuous actions, and the gradient from the action expert does not flow back to the main VLM
backbone. In addition to the language command, π0.6 can optionally take in conditioning metadata
in the prompt that further modulates how the task is performed. With 5 denoising steps and 3
camera inputs, π0.6 takes 63ms to produce an action chunk on a single H100 GPU.

3 Training data

π0.6 largely inherits the training data composition used in π0.5, which consists of cross-embodiment
data collected in-house and external data sources, diverse mobile and non-mobile data collected
in home environments, high-level subtask prediction, and multi-modal web datasets, including
bounding box and keypoint prediction.

In previous models, we found additional task-specific fine-tuning using curated high-quality data,
referred to as post-training, to be highly effective and sometimes necessary to achieve good per-
formance. π0.6 achieves significantly stronger performance across tasks without task-specific fine-
tuning thanks to the diverse training data and rich metadata conditioning (Section 4).
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Figure 1: π0.6 model architecture.

4 Evaluations

We present evaluation results comparing π0.6 with the improved version of π0.5 trained with Knowl-
edge Insulation (open-sourced at openpi [4]). Neither models underwent task-specific fine-tuning.
We refer to such evaluation setting where the models are not post-trained to perform well on spe-
cific task as out-of-the-box evaluation. The evaluation metrics include task success rate or progress,
and throughput defined as the number of successes per hour. Standard error is shown through the
error bars in the figures.

Static tasks. Figure 2 shows the results on tasks including shirt folding (shirt initially flat on
the table), laundry folding (T-shirts and shorts initially in a basket), box assembly, and table
bussing, performed with static robot platforms. These tasks were introduced in the π0 paper.
Across tasks, π0.6 shows significant improvement over π0.5 in speed and often success rates. The
biggest differences lie in laundry folding and box assembly — previously these two tasks require
fine-tuning with high-quality data to achieve non-zero success rates. π0.6 can out-of-the-box fold
laundry reliably, and fully assemble the box 20% of the time.

Figure 2: Out-of-the-box evaluation results in static tasks. π0.6 improves speed in all tasks and is
able to fold laundry consistently and sometimes fully assemble the box.
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Mobile tasks. Figure 3 shows the results on four tasks performed with mobile bimanual robots:
picking up laundry and placing it into a basket, tidying bed, putting dishes in the sink, putting
items into the drawer. They are the main evaluation tasks in the π0.5 paper. Across tasks, π0.6
improves throughput over π0.5 when the average task progress is saturated or otherwise improves
both performance and throughput.

Figure 3: Out-of-the-box evaluation results in mobile tasks. The highest y-tick value in task
progress is the maximum possible value for the task. π0.6 improves speed in all tasks and also the
average task progress if it is not saturated yet.

Generalization tasks. Figure 4 shows the results on a series of mobile and static tasks that
require either within-distribution or out-of-distribution generalization in terms of language following
(e.g., “pick up the third fruit from the left” or “move to where the fresh milk is kept”) and novel
skills (e.g., “wipe the spill with the bread” or “hang the shorts into oven handle”). The majority of
the language instructions and the objects used during evaluation are not seen in training . Each of
the four suite of tasks involves three levels of difficulty and a total of 12 to 18 instructions. Across
settings, π0.6 demonstrates healthy improvements over π0.5. The mobile settings are generally
more challenging as the tasks are often longer in horizon and the environments contain more task-
irrelevant distractors.

Figure 4: Out-of-the-box evaluation results in generalization-focused tasks. π0.6 shows healthy
improvement across settings over π0.5.
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